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Abstract
Some years ago, it was shown how fermion self-interacting terms of the
Thirring-type impact the usual structure of massless two-dimensional gauge
theories [1]. In that work only the cases of pure vector and pure chiral
gauge couplings have been considered and the corresponding Thirring term
was also pure vector and pure chiral respectively, such that the vector (or
chiral) Schwinger model should not lose its chirality structure due to the
addition of the quartic interaction term. Here we extend this analysis to a
generalized vector and axial coupling both for the gauge interaction and the
quartic fermionic interactions. The idea is to perform quantization without
losing the original structure of the gauge coupling. In order to do that we make
use of an arbitrariness in the definition of the Thirring-like interaction.

PACS numbers: 11.10.Kk, 11.15.Tk

The physics of the two-dimensional quantum field theories has a long and beautiful history.
Particularly, one of the most important and beautiful features of this restricted number of
dimensions is that it allows the exact solvability of some important fermionic models, which
is intrinsically connected with the idea of bosonization. The bosonization program leads to
a deeper understanding of the internal structure of the models. People have been trying to
extend it for higher dimensions for a long time. One of the first models to be exactly solved
in the history of the quantum field theory is the Thirring model [2], and a little time after that
Schwinger presented to the world what is now a landmark for the bosonization technique, the
so-called Schwinger model [3], whose solution through operator approach was carried out by
Lowenstein and Swieca in another beautiful and classical paper [4]. Its path integral solution
was obtained in [5] by following an approach introduced by Fujikawa [6]. After several works
analyzing a number of properties and applications of these and other exact two-dimensional
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systems, Jackiw and Rajaraman [7] published a seminal paper in this subject where they have
presented the first consistent model with an anomalously broken gauge symmetry, the chiral
Schwinger model (CSM). In a non-trivial extension, some authors developed these ideas for
the case of the arbitrary left and right couplings which may be called a generalized Schwinger
model (GSM) [8–10].

Some years ago [1], some of the above ingredients were combined together in order to
explore the effect of the quartic fermionic self-interaction of the Thirring type on, among other
physical properties, the dynamically generated photon mass. It has been shown in that work
that, for instance in the case of the Schwinger model, the dynamically generated photon mass
is screened due to the self-interacting Thirring term as follows:

m2 = e2

π + g2
. (1)

We can also speak of a kind of duality, in the sense that a model with strong Thirring coupling
g can be traded in another one with small electromagnetic coupling e [1].

In this work, we initially extend the analysis of the impact of fermionic self-interactions
on the structure of the gauge theories in 1 + 1 dimensions and, after demonstrating that the
special case of CSM cannot be taken as a limit of the general model, we present the difficulties
in performing this task without losing the chirality of the original CSM model.

1. Generalized Schwinger model with Thirring coupling

Our starting point is a generalized Schwinger model, below P± = (1 ± γ5)/2,

L = �̄(i∂/ + eRγ µP+Aµ + eLγ µP−Aµ)� − 1
4FµνFµν. (2)

Next we would like to add a general quartic fermionic interaction such that it is both chiral
and gauge invariant while keeping the explicit Poı́ncare covariance. Before we introduce
our model, it is important for our purposes to make use of a two-dimensional spinor identity
proved in [11], namely,

(�̄M�)2 = det M(�̄�)2, (3)

where M may be any 2 × 2 nonsingular matrix. Now, it follows from det P± = 0 and
(3) that (�̄γµP±�)2 = 0. Consequently, by making use of the representations �̄γµ� =
�̄γµ(P+ + P−)� and �̄γµγ5� = �̄γµ(P+ − P−)�, we can derive

a(�̄γµ�)2 + b(�̄γµγ5�)2 + c(�̄γµ�)(�̄γ µγ5�) = (a − b)

eReL

[�̄γµ(eRP+ + eLP−)�]2. (4)

Where the constants a, b, c are arbitrary and we have assumed eR, eL �= 0. Note that the
right-hand side of (4) is independent of c which stems from the fact that the term jµj 5

µ, which
multiplies c, vanishes identically by virtue of (3) and the afore-mentioned representations.
The vanishing of both sides of (4) for a = b can be easily checked from (3) and det γ5 = −1.

Therefore, with the exception of the chiral Schwinger models eR = 0 or eL = 0, identity
(4) allows us to add a rather general quartic fermionic term to the generalized Schwinger
model in such a way that the chiral structure of the gauge coupling is maintained. That is,

L = �̄(i∂/ + eRγ µP+Aµ + eLγ µP−Aµ)� − g2

2
(�̄γµ(eRP+ + eLP−)�)2

− 1

4
FµνFµν + jµ�̄γµ(eRP+ + eLP−)�, (5)
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where we have introduced a source term for future use. In order to deal with this model, one
usually reduces the order of the quartic interaction by means of an auxiliary vector field Bµ

which leads us to a physically equivalent effective theory

Leff = �̄(i∂/ + eRγ µP+Aµ + eLγ µP−Aµ)� − gBµ�̄(eRγ µP+ + eLγ µP−)� + 1
2BµBµ

− 1
4FµνFµν + jµ�̄γµ(eRP+ + eLP−)�. (6)

By integrating over Bµ in the path integral or using its equations of motion we recover (5).
Now it is clear that the fermionic fields interact with the gauge field, the auxiliary field and
the source through the combination

Cµ ≡ Aµ + jµ − gBµ, (7)

in terms of which, the Lagrangian density can be rewritten as

Leff = �̄(i∂/ + eRγ µP+Cµ + eLγ µP−Cµ)� +
1

2g2
(Aµ + jµ − Cµ)2 − 1

4
FµνFµν. (8)

This last expression can be bosonized through standard techniques as in [10] with the following
steps. First of all, one introduces a general vector decomposition Cµ = εµν∂

νχ + ∂µη. Next,
one decouples the fermionic fields through a chiral and a gauge transformation:

� = exp[ieV (η + χγ5) + ieA(ηγ5 − χ)]ζ (9)

where

eV = eR + eL; eA = eR − eL. (10)

The chiral transformation has a nontrivial Jacobian [6] . The effective theory including the
Jacobian becomes

Leff = ζ̄ (i∂/)ζ +
1

2
χ

2
�χ +

1

2π

(
e2
A

4
− m2

)
η � η +

1

2π

(
e2
V

4
+ m2

)
χ �χ − eV eA

4π
η � χ

+
1

2g2
(Aµ + jµ − εµν∂

νχ − ∂µη)2 − 1

4
FµνFµν, (11)

where m is an arbitrary parameter. The terms which depend on χ and η are combined back
into the field Cµ. Some of them can be written as a functional integral over a scalar field φ.
After all those steps we obtain the intermediate effective Lagrangian density,

Leff = ζ̄ (i∂/)ζ +
1

2
(∂µφ)2 − 1

2
√

π
[eAgµν − eV εµν]∂νφCµ

+
m2

2π
C2

µ +
1

2g2
(Aµ + jµ − Cµ)2 − 1

4
FµνFµν, (12)

At this point we can change back the variables from the field Cµ to Bµ according to (7).
Integrating out the auxiliary field Bµ and the free Dirac field ζ we obtain a full bosonized
Lagrangian density generalizing the work of [1]:

Lbosonic = 1

2

[
1 +

eReLg2

π + m2g2

]
(∂µφ)2 −

√
π [eAgµν − eV εµν]∂νφ

2(π + m2g2)
(Aµ + jµ)

+
m2

2(π + m2g2)
(Aµ + jµ)2 − 1

4
FµνFµν. (13)

Note that for g = 0, expression (13) at jµ = 0 reproduces the result of [10] for the GSM.
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Now we analyze the particle content of the bosonized theory. Integrating over the scalar
field in the absence of external sources we obtain an effective nonlocal action for the photon

Leff(A) = −1

4
Fµν

[
1 +

α
(
e2
V + e2

A

)
4 �

]
Fµν +

(
m2

K
− αe2

A

4

)
AµAµ

2
+

αeV eA

4
εµν∂µAν

1

�∂βAβ,

(14)

where we have the constants

K = π + m2g2; α = π

K(K + eReLg2)
. (15)

In the vector case eR = eL ≡ e, we can recover the gauge symmetry by fixing conveniently
the arbitrary parameter m2 = 0 which leads, redefining g → g/e, to a nonlocal gauge theory
with a massive photon m2

ph = e2/(π + g2) which reproduces the result of [1] and the result
of the Schwinger model for g = 0. In the general case the gauge symmetry is broken, so we
can compute the propagator without gauge fixing. We first note that Leff(A) = AµGµνAν/2,
where the kinetic operator is of the form Gµν = agµν + bθµν + cVµν with the definitions in
momentum space θµν = gµν − kµkν/k2, Vµν = Tµν + Tνµ, with Tµν = εαµkνk

α . It is easy to
check that the propagator is given by

〈Aµ(k)Aν(−k)〉 = G−1
µν = 1

D
[(a + b)gµν − bθµν − cVµν], (16)

where

a = m2

K
− αe2

A

4
, b = α

(
e2
V + e2

A

)
4

− k2, c = αeV eA

4k2
, (17)

D = (a + b)a + k4c2 = k2

(
αe2

A

4
+

m2

K

)
− m2

K

[
αeReL +

m2

K

]
. (18)

The last term in the propagator (16) contains a pole at k2 = 0. However, if we saturate the
propagator with conserved currents and calculate the residue at this pole we have a vanishing
result, i.e., limk2→0 k2Jµ〈Aµ(k)Aν(−k)〉J ∗

ν = 0. Therefore we do not have a propagating
massless particle as one might think. On the other hand, if we repeat this calculation at the
pole coming from the condition D = 0, we have a positive residue indicating a physical
massive photon k2 = m2

ph whose mass depends on the arbitrary regularization parameter as
follows:

m2
ph = m2

[
m2 +

(
e2
V − e2

A

)/
4
]

m2g2
[
m2 +

(
e2
V − e2

A

)/
4
]

+ π
(
m2 − e2

A

/
4
) . (19)

Result (19) is both in agreement with the chiral case (eV = eA) treated in [1] and the GSM
without Thirring interaction (g2 = 0) studied in [12]. As in those cases, the arbitrary parameter
m2 must satisfy a specific bound in order to avoid tachyons.

Finally, we return to the issues of bosonization and the chiral limit. Since the quadratic
term in the sources in (13) can only give rise to contact terms in the correlation functions of
the U(1) current, by comparing (13) with (5) we read off the bosonization rule:

�̄γ µ(eRP+ + eLP−)� = �̄γ µ(eV + eAγ5)� = m2

(π + m2g2)
Aµ −

√
π[eAgµν − eV εµν]∂νφ

2(π + m2g2)
.

(20)

As in the chiral case studied in [1], we remark that the bosonization rule for the above-
generalized current is ambiguous due to the arbitrary, regularization-dependent, parameter
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m2. As commented in [1], we note that the identity (�̄γ µP±�)2 = 0 will not be respected
by the bosonic map (20) in the chiral cases eR = 0 or eL = 0. This is a quantum effect,
since it is caused by the gauge field term on the right-hand side of (20) which appears due
to the regularization procedure. In fact, had we started with the CSM plus a chiral Thirring
interaction

L = �̄[ i∂/ + eP±γ µ(Aµ + jµ)]� − 1

4
FµνFµν − g2

2
(�̄γµ(P±)�)2, (21)

since the last term vanishes identically, see comment after (3), we would end up with another
bosonized Lagrangian density different from (13):

Lbosonic(a) = 1

2
(∂µϕ)2 − e√

π
(gµν ± εµν)∂νϕ(Aµ + jµ) +

ae2

2π
(Aµ + jµ)2 − 1

4
F 2

µν, (22)

where a is the Jackiw–Rajaraman [7] parameter which represents regularization ambiguities.
Analogous to the derivation of (20) we derive from (21) and (22) a new bosonization rule
which is also ambiguous but differs from (20), namely,

e�̄γ µP±�(a) = ae2

π
Aµ − e√

π
(gµν ± εµν)∂νϕ. (23)

There is of course no trace of the Thirring interaction in (22) and ( 23). On the other hand,
in the chiral limits (eR, eL) → (0, e) or (eR, eL) → (e, 0), the Lagrangian density (5) coincides
with (21) after the trivial replacement g → geR in (21). However, differently from (22) and
(23) we have some dependance on the Thirring coupling constant in (13) and (20) in the chiral
limits. Even if we redefine the arbitrary parameter m2 such that m2/(π + m2g2) → ae2 we
still have a mismatch between formulas (13) and (22) and also (20) and (23). The difference
might be interpreted as a finite charge renormalization. Furthermore, we should identify
φ = ϕ for eL = 0, while for eR = 0 we have φ = −ϕ. We can only make the couple
of equations (13), (20) coincide with (22), (23) in the chiral limit either by taking g2 → 0
or selecting out the parameters m2 = 0 = a. As a consequence we should conclude that
there is apparently no way of introducing the Thirring-like interaction for the CSM without
losing its chiral characteristic. In fact, it can be shown that, for a large class of non-chiral
Thirring-like interactions, the chirality of the original fermions is lost as it should be expected.
Finally, a quite interesting and intriguing conclusion from above is that one can introduce the
Thirring-like interaction consistently, preserving the original mixture of the right–left modes,
except for the CSM models.
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